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Abstract. A Schivdinger operatof. = —d?/dz2+ U (z) with a matrix-valued rational potential

U(z) is said to have trivial monodromy if all the solutions of the corresponding dsichger
equationsLy = Ay are single-valued in the complex planes C for any . A local criterion

of this property in terms of the Laurent coefficients of the potertiiahear its singularities,
which are assumed to be regular, is found. It is proved that any such operator with a potential
vanishing at infinity can be obtained by a matrix analogue of the Darboux transformation from the
Schivdinger operatolg = —d?/dz2. This generalizes the well known Duistermaatis@yaum

result to the matrix case and gives the explicit description of thedatger operators with
trivial monodromy in this case.

1. Introduction

In 1986 Duistermaat and @nbaum [1] proved the following result, which appears very
classical but seems to have been unknown before.
Consider a Sclidinger operator

d2
L= a2 + u(z) Q)
with a rational potential(z) and the corresponding Scldinger equation
Ly =M 2

in the complex plane € C.

Assume that all the singularities afz) are regular, i.eu(z) has the poles of order at
most 2. In general, this equation has a non-trivial monodromy around such a singularity
depending on the spectral parameterlf this is not the case, i.e. all the solutions of the
equation (2) are single-valued in the complex donfairall A, we say that the corresponding
Schibdinger operator hasivial monodromy

Theorem ([1]). A Schiddinger operato. with a rational potential vanishing at has
trivial monodromy if and onlyL can be obtained fronLy = —d?/dz? by finitely many
Darboux transformations.
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The corresponding potentialz) can be given by the following formula:
2

d
u=—-2——=logwr, ¥, ..., ¥, (3

dz?
where w(, Yo, ..., ¥,) is the Wronskian of the polynomial functiong,, v, ..., ¥,
such thatyy =0 andy/,; = ¢; for j =1,2,...,n — 1 andn is the number of Darboux
transformations applied (see [2-4]) .
The Darboux transformation [5] of a Sélinger operatoL is defined in the following
way. Let us first factorizd. as

d
L=—(D+ f)D-f) D=—.
4
To do this one can take any non-zepofrom the kernel ofL

Ly =0

and find f from (D — f)y =0: f =¥ -v~L = (logy)’. Now we can define a new
operator

L=—(D-f)D+ /).

Iterating this procedure times applied to the given operatdr = Lo we arrive at an
operatorL, which satisfies the relation

L,A, = A,Lg 4)
where A, is the differential operator of order:
An == (D - fn—l)(D - fn—Z) e (D - fO) (5)

In the case wheréo = —D? the kernel ofA,, is generated by the functions, ¥, ..., ¥,
described above. In terms of these functienhscan be written as

W, ..., Yn, P)
w(wl’ ey 1shn) .
The aim of the present paper is to generalize these results into the matrix case and to
describe the Schbdinger operators
2

dz?
with a matrix-valued rational potenti@l (z) having trivial monodromy.

In section 2 we introduce the notion of the matrix Darboux transformation and give
some formulae in terms of the so-callegiasideterminantdntroduced by Gelfand and
Retakh in [6].

In section 3 we find the local conditions on the potential of a 8dimger operatoi.
with trivial monodromy. We then use these conditions to prove our main result which is as
follows.

A, (¢) =

L= +UR) (6)

Theorem. Let L be a matrix Schirdinger operator with a rational potentidlz) vanishing
atoco. Assume that all its singularities are regular, Ugz) has the poles of order at most 2.
ThenL has trivial monodromy if and only it is a result of matrix Darboux transformation
applied toLo = —d?/dz2.

Although this result looks like a straightforward generalization of the Duistermaat—
Gruinbaum theorem, the proof is different even in the scalar dasel. It is based on the
ideas of the recent paper by Chalykh on multidimensional scalab8ictyer operators [7].
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2. Matrix Darboux transformations and quasideterminants

Consider the Sclidinger operator
d
L=-D*+U(z) D=— )
dz

with a potentialU (z) beingd x d matrix-valued function.

Definition. We will say that the operatoL is obtained from another operatdry, =
—D?4Uy(z) by matrix Darboux transformation@VIDT) if there exists a differential operator
A=D"+ai(z)D" 1+ .- +a,(z) such that

LA = ALy. 8)

In other words, there exists a matrix differential operatowith the identity highest
coefficient which intertwined. and Lg. The ordem of A is calledthe order of the MDT

The classical Darboux transformation [5] corresponds to the scalardcasg and the
ordern = 1. Indeed, in this case one can prove (see, e.g., [8]) Ahat D — f where
f = (logy) for some eigenfunctiony of Lg

Loy = Ay.
This means thalg — A/ can be factorized in the form
Lo—A =—(D+ /HD—[)
and
L—A=—(D— f)D+f).

In the matrix case withd > 1 this may not be true even if = 1. So, the matrix Darboux
transformation is in general not related to any factorization.@f- A7 in contrast to the
scalar case.

The following simple result explains the nature of the MDT (cf [8]).

Theorem 1.The kernel of the intertwining operater is invariant underLg
Lo(KerA) C KerA.

Conversely, for anyid-dimensionalLe-invariant subspac& of d-vector functions there
exist the operatord and L such that Ked = V and

LA = ALy.
Proof. The first statement is obvious: from (8)
A(Loy) = (LAY =0

if Ay =0. ThusLo(KerA) C KerA. To prove the inverse statement we construct first the
operatorA = D" + a;D"! + .. 4 a, which has the given kernél. This can be done

in the same way as in the scalar case (see, e.g., [9]). Then we consider the opérator
SinceV is Lo-invariantALy(V) = 0, i.e.V C KerALq. This means the the operatai.,

is right-divisible by A:

ALo= LA.

One can check easily that ify is a Schodinger operator theh has to be a Schdinger
operator as well.
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To write down the explicit formulae forA and L we will use the notion of the
guasideterminantntroduced by Gelfand and Retakh [6].

Let R = Mat, (C) be an algebra of matricelx d andX be ann xn matrix overRr (in [6]
guasideterminants were introduced for any associative algRpréror any 1< i,j < n
let r;(X) be theith row andc;(X) be thejth column ofX. Let X/ be the submatrix of
X obtained by removing théth row and thejth column fromX. For a row vector let
r ber without the jth entry. For the column vectarlet ¢ be ¢ without theith entry.
Then the quasideterminant

|Xlij = xij — i ()P (X7 ;0O
wherex;; is theijth entry of X. If d =1 then

o qya+p detX
IX|yj = (=D
We should say that the term ‘quasideterminant’ may be misleading, since it corresponds to
a generalization of the fraction of determinants of the matrix and its submatrix, but not to
a determinant itself. Note also that the quasideterminant is not always defined, in contrast

to the scalar case. It is easy to check the following properties (see [6]):

(a) the quasideterminank|;; does not change after the permutation of rows and columns
in X provided the element;; is preserved;

(b) if the quasideterminantX|;; of a matrix X is defined thernX|;; = O is equivalent to

the fact that thejth column of matrixX is a right linear combination of other columns of
this matrix (columns are multiplied by the elementsrofrom the right).

Let us combine the vectors of a basis ip-invariant spaceV as a columns of:
d x d matricesW¥q, ..., ¥,: V = (¥q,...,¥,). In terms of the matrice¥, ..., ¥, the
intertwining operatord can be written as

AW) = W\, ..., WU, W)lutins1 9)
where
W, v, 1}
W, ..., ¥, V) = \If{';‘l) \y(};_l) QJ(’;—l)
v qn,;ln) Q!
(see [9]). Then the potentidl (z) can be written as
U = Up + 2a;(z) (10)
wherea;(z) is the first matrix coefficient oft: A = D" + a1(2)D" 1 + - - 4+ a,(2). If we
assume that the subspace generated by the columns of the firbt matrices¥, ..., ¥, 1

is Lo-invariant then one can write the following formula for the potentiabf the operator
L (ct[9])

U=Uy—2Y,, W, (11)

where
V2 e v,

W=WMNq,...,¥, ’ ’ ’
(¥1 ) WL gD

(n—1) -1
2 s =D
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Wy - v,
Y=Y(Vq,...,¥,) = ’ ’ ’
( 1 ) \I’{"_z) . \II’S”*Z)
qji") g
and Ynn = |Y|n,na Wnn = |W|n,n-
In the special casé, = —D? any Lo-invariant spaceV is generated by the columns
of thed x nd matrix ® satisfying the equation
P = &C 12)
where a constantd x nd matrix C can be assumed to be in Jordan form:
J1(A1) 0 0 A1 0
0 Jz()xz) 0 0 . T 0
C= . J() =
0 ... .. 0 o ... . 1
0 0 Jm()\m) o ... 0 A

Note that in this casé&/ consists of vectors with the quasipolynomial coordinates
x; = Y., pij€%, pij(z) are polynomials inz. Pure polynomial case corresponds to

A1 =iy =---=x, = 0. Equation (11) gives the general form of the potential in this case
where ® = (Vq,...,¥,) is any solution of the equation (12) with linearly independent
columns.

In order to obtain the rational potential one has to consider the matrixith all
A = 0. As follows from (9), (11) the singularities of the potential are the zeros of the
(usual) determinant of the matri¥ = W(Wq, ..., ¥,)

detW(z) =0 (13)

which in this case is polynomial on It is easy to show that the degree of this polynomial
is Ny(n) = nd(nd + 1)/2 (cf [10], whered = 1 is considered) in the case whénconsists
of only one Jordan block

0 1 0

0 0
C =

o ... . 1

o ..- 0 O

For otherC the degree of da¥ is less thenN,(n). Let us consider the generic case,
when degdeW = N,(n) and all the roots of the equation (13) are simple. Then from the
formulas (11), (12) one can derive that the potentidt) has the form

Ny(n) Ai
U(z) = Z G2 (14)

i=1
where all the matriced; have rank 1.

3. Matrix Schrodinger operator with trivial monodromy

Let us consider the matrix Sabinger equation

d2
—gzV HUQY = EY (15)
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with a meromorphic potentiall (z). Let z = zo be a singularity ofU. Without loss of
generality we can consider the cage= 0. We assume that this singularity is regular (see
the definition in [11]), i.e. in the neighbourghood of zéf¢z) has an expansion of the form

Co C. >,
U@R)=—5+-—+Co+Ciz+--= Y Cz (16)
Z Z S

whereC; are some constait x d matrices.

Lemma 1. If the matrix Schédinger equation (15), (16) for sonte € C has a complete
basis of solutions which are meromorphic neat 0 thenC_; is diagonalizable with the
eigenvalues.; = m;(m; — 1), m; € Z,.

The proof follows from analysis of the series expansions
v =Wot v+ + Y+ (17)
satisfying (15), (16).

ThusV can be represented as a direct sum of the eigenspaaes,of

M M
V= @ Vi dim Vin = dn, Zldm =d (18)

where the eigenspadg, corresponds to the eigenvalue= m(m — 1) (some of these spaces
can have dimensiod,, = 0).
Any operator inV

M M
A DY~ D
i=1 i=1
can be represented in a block form:
A = (AY) ij=1....M
whereA’/ are some operators
ATV - V.

This corresponds to the representation of the matriof such an operator in a suitable
basis in the block form

A= (AY) 1<i,j <M (19)

where A" ared; x d; matrices.
Any vectorys in V can be uniquely represented as a sum

M
wzzw vie V. (20)
i=1

Now let us consider the case when all the solutions of the @lihger equation (15)
are meromorphidor all E € C, i.e. the corresponding Sdidinger operator has trivial
monodromy.

The following local criteria for this can be proved in the same way as in the scalar
case [1]. We will consider all the matrix coefficien€s and ¢, from (16), (17) to be
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represented in the form (19), (20) related to the eigensplitting (18) of the coeffiCient
In particular, we assume that_, has the following diagonal form:

0-1
2.1

C_2 - m(m - 1) : Im (21)

MM —1)- 1y

wherel,, is d,, x d,, identity matrix. If some ofl,, = 0 the corresponding entries in matrix
coefficients should be omitted. We should note also that, in general, the splittings (18)
depend on the singularity = zq.

Theorem 2 A matrix Schibdinger operatof. with a meromorphic potentid/ (z) has trivial
monodromy if and only if the following entries of the corresponding matrix coefficients in
the expansions ol/ (z) near any of its singular points vanish:

1. c/ =0 if li—jl=i+1

. (22)
2. ¢’ =0 if i+j=1+31+5,...,1+2+1,...
wherel = —-1,0,...,2M — 3. In particular, the matrix residu€_; = 0.

The coefficientsyr, V1, ..., Y23 Of the corresponding expansions of the vector-
eigenfunctions
Y= "o+ a4+ Y+

satisfy the conditions
1. ¥ =0 if i+l<M
2. vl =0 if i+l=M+1M+3,.... M+2k+1,... (23)

and l —i <M -3
The structure of the corresponding coefficients is shown below:

* * * *

Com—3=| : | Cowea=| « |

*
*

* * 0 * * 0 =
* * * * 0
* 0 x
Coy—5 = : 1. ... Cu== * 0
: ’ * 0
* * * 0 *
0
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and
* * 0 0 O
* 0 * 0
x 0
Ck = O * * 0 k < M — 2
0
0 * 0 *
0O O *
In particular
* 0 0 O
0 0
Co =
0 0
0 O 0 «x
Then
0
0 0 ]
0 : :
. ) 0
Yvo=|:1|, vi=]o0o]|, 2=
0 * *
0
* 0
*
and so on.
* * *
0 * *
* 0
Y=ol Vm=|, - Vwms= .
* 0 N
0

Consider now the main case wWhér(z) is rational and decays at infinity. Since all the
residues must be zeld(z) can be represented as
N A
U(z) = . 24
@ Z (z—z)? 24)

i=1
Relations (22) give the algebraic system for the matrix coefficidntand poles;; which
we will call aslocus equations This terminology goes back to the paper by Airaeftal
[10], who considered this system in the scalar case.
Let us consider the case (which is generic in some sense, see equation (14) in section 2)
when the rank of all matriced; is 1 and the only non-zero eigenvalue 4f is 2. Such
matrices can be represented as

A =2a; ® b;
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wherea; € V* is a covectorp; € V is a vector such that;(b;) = 1. By definition, for any
xevV

a; @ bj(x) = a;(x)b;.

Here the vectob; is the eigenvector ofi; with eigenvalue 2:

A;(b;) = 2a;(b;)b; = 2b;

and the covectos; defines the kernel ofi; by the relationa; (x) = 0.
For the potential

N
261,' ® bi
U(z) = — 25
© ; (z —zi)? (29)
the locus equations (22) can be written in the following explicit form:
Cli®bi, &]2 =0 l=1,,N
i (Zj —Zi)

(26)
“ODGO) _o 1N,
i (zj — zi)

They coincide with the stationary equations for the matrix version of the Calogero—Moser
system suggested by Gibbons and Hermsen [12] (see also [13]). The matrix Darboux
transformation allows us to construct some solutions to this complicated algebraic system
because of the following result.

Theorem 3 All matrix Schiddinger operatord. obtained by Darboux transformation from
Lo = —d?/dz? have trivial monodromy.

Proof. Indeed, the kernel of the intertwining operatbis invariant undei.q and, therefore,

is generated by linear combination of exponents and polynomials. This implies that all the
coefficients of A are meromorphic i@ and, therefore, any eigenfunctiah of L can be
written on the form

¥ = A(“Ry + € 5Ry)
where R, and R, are constant matrices.

It turns out that in such a way all the Sékiinger operators with trivial monodromy
can be constructed. This follows from our main theorem:

Theorem 4.Let L be a matrix Sclirdinger operator with a rational potentidlz) vanishing
at co. Suppose that the corresponding Schinger equation.y = Ay has only regular
singular points and. has trivial monodromy. Theii can be obtained by matrix Darboux
transformation fromLy = —d?/dz?.

Proof. We borrow the main idea from the recent paper by Chalykh [7]. Let

NoooQg
U@ =)y m (27)

s=1
andi, = M,(M,; — 1) be the maximum of eigenvalues of the matAx. Introduce a linear
spaceV consisting of the vector functiong(z), z € C satisfying the following conditions:
1. ¥ (2) [T,z — z,)™ 1 is holomorphic inC.
2. The coefficients of the Laurent expansionypfz) at the vicinity ofz,, s = 1,... N
satisfies the conditions (23) withh = M.
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Due to theorem 2 the coefficients of the potential satisfy relations (22). One can check
that this implies that the spadé is invariant with respect td. (cf [7]).

Let us consider the vector functiofy = ]‘[f’zl(z — z,)M~1ek%y, wherev is a constant
vector. Evidently,y € V and, therefore, all vector functions

vi = (L+ K)o
belong toV as well. These functions have the form
i = Pilk, €%

where P; (k, z) is a polynomial ink and a rational function in. Since

Td2 T
the degree of; in z at infinity decreases with deg P, < M —i, M = Zf’:l(MS —1). On
the other hand, since the spakes invariant undet. the degree of the denominator 8f

cannot be more than that pf™_, (z—z,)* 1. So, there exists & such tha(L+k?)yx = 0.
It is easy to see that fai/ defined above

o? d
Pi+1= ( 2k_+U(Z))P,

Y = [zMM!kZ.»-”:ﬂMrl) ¥ ] &y £ 0. (28)
We claim thaty.1 = (L + k?)yy = 0. Indeed, assume that this is not true. Then for
someK > M yx # 0,

Yk = (L+k*)yg =0.
Since

dz

and Pk is polynomial ink its highest coefficient has to be constant. At the same tipe
has to decay at infinity at least a¥~X. Thusk = M and

Ly = —k*Yu.
Now considerv to be the basis vectors, e, ..., e; and arrange the matriyy with the

corresponding vector functions,, as the columns. Replacirigby d/dz we can define a
differential operatord such thaty = Ae“I. We have

LV = LAE®T = —k?A] = —AK?eT = ALoe T
and, therefore,
LA = ALy. (29)

Thus, L is related toLg = —d?/dz? by a matrix Darboux transformation. The theorem is
proved.

o? d
PK+1= ——2—2k—+U(Z) P]( =0
dz

Remark. We should mention that in contrast to the scalar case MDT in general does not
preserve the regularity of the singular points. As an example one cari.taie above and

()

After the corresponding matrix Darboux transformation (11) we have
1 2

U= z
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so U(z) has the pole of order three at= 0. Of course, this may happen only as a
degenerate case when some of the singularities collide (cf [14]).

As a corollary to theorem 4 we give the following description of the 8dimger
operators with trivial monodromy in the simplest case whes 2 and the potential/ (z)
has only three second-order poles. From the explicit equations (11) and (12) it follows that
these three poles can be arbitrary complex numbersusayand w. They are the only
essential parameters of the locus in this case: after a suitable transforiiatiol U C 1
the potentialU (z) has the following form:

P, P, P,
z—w? (z—-v)? (z—w)?
where the projector®,, P,, P, are defined as follows:

U(z) =

P _ 2 (wv—u2 u(u? — vw) )
CTu—wu—v) \w—2u+v —u(w—2u+v)
2 uw — u? v(v? — uw)
1):(v—w)(v—u)(u—Zv—i—w —v(u—2v+w)>
and
P — 2 ( uv — w? w(w? — uv) )
YT w—ww—-v) \u—-2w+v —wu—2w+v)/)’

Note that this potential is symmetri¢ = U iff u, v andw are the three roots of the
equation

#2+3%+1=0

for somer € C.

The general investigation of the symmetry and reality conditions as well as the spectral
properties of the corresponding Setimger operators is still to be done. We should mention
in this context the papers by Wadati [15] and Calogero and Degasperis [16], where some
of these problems have been discussed in the relation to the matrix KdV equation (see also
Agranovich and Marchenko [17]).
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