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Abstract. A Schr̈odinger operatorL = −d2/dz2+U(z) with a matrix-valued rational potential
U(z) is said to have trivial monodromy if all the solutions of the corresponding Schrödinger
equationsLψ = λψ are single-valued in the complex planez ∈ C for any λ. A local criterion
of this property in terms of the Laurent coefficients of the potentialU near its singularities,
which are assumed to be regular, is found. It is proved that any such operator with a potential
vanishing at infinity can be obtained by a matrix analogue of the Darboux transformation from the
Schr̈odinger operatorL0 = −d2/dz2. This generalizes the well known Duistermaat–Grünbaum
result to the matrix case and gives the explicit description of the Schrödinger operators with
trivial monodromy in this case.

1. Introduction

In 1986 Duistermaat and Grünbaum [1] proved the following result, which appears very
classical but seems to have been unknown before.

Consider a Schrödinger operator

L = − d2

dz2
+ u(z) (1)

with a rational potentialu(z) and the corresponding Schrödinger equation

Lψ = λψ (2)

in the complex planez ∈ C.
Assume that all the singularities ofu(z) are regular, i.e.u(z) has the poles of order at

most 2. In general, this equation has a non-trivial monodromy around such a singularity
depending on the spectral parameterλ. If this is not the case, i.e. all the solutions of the
equation (2) are single-valued in the complex domainfor all λ, we say that the corresponding
Schr̈odinger operator hastrivial monodromy.

Theorem ([1]). A Schr̈odinger operatorL with a rational potential vanishing at∞ has
trivial monodromy if and onlyL can be obtained fromL0 = −d2/dz2 by finitely many
Darboux transformations.
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The corresponding potentialu(z) can be given by the following formula:

u = −2
d2

dz2
logw(ψ1, ψ2, . . . , ψn) (3)

wherew(ψ1, ψ2, . . . , ψn) is the Wronskian of the polynomial functionsψ1, ψ2, . . . , ψn
such thatψ ′′1 = 0 andψ ′′j+1 = ψj for j = 1, 2, . . . , n− 1 andn is the number of Darboux
transformations applied (see [2–4]) .

The Darboux transformation [5] of a Schrödinger operatorL is defined in the following
way. Let us first factorizeL as

L = −(D + f )(D − f ) D = d

dz
.

To do this one can take any non-zeroψ from the kernel ofL

Lψ = 0

and findf from (D − f )ψ = 0: f = ψ ′ · ψ−1 = (logψ)′. Now we can define a new
operator

L̃ = −(D − f )(D + f ).
Iterating this proceduren times applied to the given operatorL = L0 we arrive at an
operatorLn which satisfies the relation

LnAn = AnL0 (4)

whereAn is the differential operator of ordern:

An = (D − fn−1)(D − fn−2) · · · (D − f0). (5)

In the case whereL0 = −D2 the kernel ofAn is generated by the functionsψ1, ψ2, . . . , ψn
described above. In terms of these functionsAn can be written as

An(φ) = w(ψ1, . . . , ψn, φ)

w(ψ1, . . . , ψn)
.

The aim of the present paper is to generalize these results into the matrix case and to
describe the Schrödinger operators

L = − d2

dz2
+ U(z) (6)

with a matrix-valued rational potentialU(z) having trivial monodromy.
In section 2 we introduce the notion of the matrix Darboux transformation and give

some formulae in terms of the so-calledquasideterminantsintroduced by Gelfand and
Retakh in [6].

In section 3 we find the local conditions on the potential of a Schrödinger operatorL
with trivial monodromy. We then use these conditions to prove our main result which is as
follows.

Theorem. Let L be a matrix Schr̈odinger operator with a rational potentialU(z) vanishing
at∞. Assume that all its singularities are regular, i.e.U(z) has the poles of order at most 2.
ThenL has trivial monodromy if and only ifL is a result of matrix Darboux transformation
applied toL0 = −d2/dz2.

Although this result looks like a straightforward generalization of the Duistermaat–
Grünbaum theorem, the proof is different even in the scalar cased = 1. It is based on the
ideas of the recent paper by Chalykh on multidimensional scalar Schrödinger operators [7].
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2. Matrix Darboux transformations and quasideterminants

Consider the Schrödinger operator

L = −D2+ U(z) D = d

dz
(7)

with a potentialU(z) beingd × d matrix-valued function.

Definition. We will say that the operatorL is obtained from another operatorL0 =
−D2+U0(z) by matrix Darboux transformations(MDT) if there exists a differential operator
A = Dn + a1(z)D

n−1+ · · · + an(z) such that

LA = AL0. (8)

In other words, there exists a matrix differential operatorA with the identity highest
coefficient which intertwinesL andL0. The ordern of A is calledthe order of the MDT.

The classical Darboux transformation [5] corresponds to the scalar cased = 1 and the
order n = 1. Indeed, in this case one can prove (see, e.g., [8]) thatA = D − f where
f = (logψ)′ for some eigenfunctionψ of L0

L0ψ = λψ.
This means thatL0− λI can be factorized in the form

L0− λI = −(D + f )(D − f )
and

L− λI = −(D − f )(D + f ).
In the matrix case withd > 1 this may not be true even ifn = 1. So, the matrix Darboux
transformation is in general not related to any factorization ofL0 − λI in contrast to the
scalar case.

The following simple result explains the nature of the MDT (cf [8]).

Theorem 1.The kernel of the intertwining operatorA is invariant underL0

L0(KerA) ⊂ KerA.

Conversely, for anynd-dimensionalL0-invariant subspaceV of d-vector functions there
exist the operatorsA andL such that KerA = V and

LA = AL0.

Proof. The first statement is obvious: from (8)

A(L0ψ) = (LA)ψ = 0

if Aψ = 0. ThusL0(KerA) ⊂ KerA. To prove the inverse statement we construct first the
operatorA = Dn + a1D

n−1 + · · · + an which has the given kernelV . This can be done
in the same way as in the scalar case (see, e.g., [9]). Then we consider the operatorAL0.
SinceV is L0-invariantAL0(V ) = 0, i.e.V ⊂ KerAL0. This means the the operatorAL0

is right-divisible byA:

AL0 = LA.
One can check easily that ifL0 is a Schr̈odinger operator thenL has to be a Schrödinger
operator as well.
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To write down the explicit formulae forA and L we will use the notion of the
quasideterminantintroduced by Gelfand and Retakh [6].

LetR = Matd(C) be an algebra of matricesd×d andX be ann×n matrix overR (in [6]
quasideterminants were introduced for any associative algebraR). For any 16 i, j 6 n

let ri(X) be theith row andcj (X) be thej th column ofX. Let Xij be the submatrix of
X obtained by removing theith row and thej th column fromX. For a row vectorr let
r(j) be r without thej th entry. For the column vectorc let c(i) be c without theith entry.
Then the quasideterminant

|X|ij = xij − ri(X)(j)(Xij )−1cj (X)
(i)

wherexij is the ij th entry ofX. If d = 1 then

|X|ij = (−1)(i+j)
detX

detXij
.

We should say that the term ‘quasideterminant’ may be misleading, since it corresponds to
a generalization of the fraction of determinants of the matrix and its submatrix, but not to
a determinant itself. Note also that the quasideterminant is not always defined, in contrast
to the scalar case. It is easy to check the following properties (see [6]):

(a) the quasideterminant|X|ij does not change after the permutation of rows and columns
in X provided the elementxij is preserved;
(b) if the quasideterminant|X|ij of a matrixX is defined then|X|ij = 0 is equivalent to
the fact that thej th column of matrixX is a right linear combination of other columns of
this matrix (columns are multiplied by the elements ofR from the right).

Let us combine the vectors of a basis inL0-invariant spaceV as a columns ofn
d × d matrices91, . . . , 9n: V = 〈91, . . . , 9n〉. In terms of the matrices91, . . . , 9n the
intertwining operatorA can be written as

A(9) = |W(91, . . . , 9n,9)|n+1,n+1 (9)

where

W(91, . . . , 9n,9) =


91 · · · 9n 9

...
. . .

...
...

9
(n−1)
1 · · · 9(n−1)

n 9(n−1)

9
(n)

1 · · · 9(n)
n 9(n)


(see [9]). Then the potentialU(z) can be written as

U = U0+ 2a′1(z) (10)

wherea1(z) is the first matrix coefficient ofA: A = Dn + a1(z)D
n−1+ · · · + an(z). If we

assume that the subspace generated by the columns of the first(n−1) matrices91, . . . , 9n−1

is L0-invariant then one can write the following formula for the potentialU of the operator
L (cf [9])

U = U0− 2(YnnW
−1
nn )
′ (11)

where

W = W(91, . . . , 9n) =


91 · · · 9n
...

. . .
...

9
(n−2)
1 · · · 9(n−2)

n

9
(n−1)
1 · · · 9(n−1)

n
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Y = Y (91, . . . , 9n) =


91 · · · 9n
...

. . .
...

9
(n−2)
1 · · · 9(n−2)

n

9
(n)

1 · · · 9(n)
n

 .
andYnn = |Y |n,n, Wnn = |W |n,n.

In the special caseL0 = −D2 anyL0-invariant spaceV is generated by the columns
of the d × nd matrix8 satisfying the equation

8′′ = 8C (12)

where a constantnd × nd matrix C can be assumed to be in Jordan form:

C =


J1(λ1) 0 · · · 0

0 J2(λ2) 0

0 · · · . . . 0

0 · · · 0 Jm(λm)

 J (λ) =


λ 1 0

0
. . .

. . . 0

0 · · · . . . 1

0 · · · 0 λ

 .
Note that in this caseV consists of vectors with the quasipolynomial coordinates

xj =
∑m

i=1pije
λiz, pij (z) are polynomials inz. Pure polynomial case corresponds to

λ1 = λ2 = · · · = λm = 0. Equation (11) gives the general form of the potential in this case
where8 = (91, . . . , 9n) is any solution of the equation (12) with linearly independent
columns.

In order to obtain the rational potential one has to consider the matrixC with all
λi = 0. As follows from (9), (11) the singularities of the potential are the zeros of the
(usual) determinant of the matrixW = W(91, . . . , 9n)

detW(z) = 0 (13)

which in this case is polynomial onz. It is easy to show that the degree of this polynomial
is Nd(n) = nd(nd + 1)/2 (cf [10], whered = 1 is considered) in the case whenC consists
of only one Jordan block

C =


0 1 0

0
. . .

. . . 0

0 · · · . . . 1

0 · · · 0 0

 .
For otherC the degree of detW is less thenNd(n). Let us consider the generic case,
when deg detW = Nd(n) and all the roots of the equation (13) are simple. Then from the
formulas (11), (12) one can derive that the potentialU(z) has the form

U(z) =
Nd(n)∑
i=1

Ai

(z− zi)2 (14)

where all the matricesAi have rank 1.

3. Matrix Schr ödinger operator with trivial monodromy

Let us consider the matrix Schrödinger equation

− d2

dz2
ψ + U(z)ψ = Eψ (15)
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with a meromorphic potentialU(z). Let z = z0 be a singularity ofU . Without loss of
generality we can consider the casez0 = 0. We assume that this singularity is regular (see
the definition in [11]), i.e. in the neighbourghood of zeroU(z) has an expansion of the form

U(z) = C−2

z2
+ C−1

z
+ C0+ C1z+ · · · =

∞∑
r>−2

Crz
r (16)

whereCi are some constantd × d matrices.

Lemma 1. If the matrix Schr̈odinger equation (15), (16) for someE ∈ C has a complete
basis of solutions which are meromorphic nearz = 0 thenC−2 is diagonalizable with the
eigenvaluesλi = mi(mi − 1), mi ∈ Z+.

The proof follows from analysis of the series expansions

ψ = zα(ψ0+ zψ1+ · · · + zkψk + · · ·) (17)

satisfying (15), (16).
ThusV can be represented as a direct sum of the eigenspaces ofC−2:

V =
M⊕
m=1

Vm dimVm = dm
M∑
m=1

dm = d (18)

where the eigenspaceVm corresponds to the eigenvalueλ = m(m−1) (some of these spaces
can have dimensiondm = 0).

Any operator inV

A :
M⊕
i=1

Vi →
M⊕
i=1

Vi

can be represented in a block form:

A = (Aij ) i, j = 1, . . . ,M

whereAij are some operators

Aij : Vi → Vj .

This corresponds to the representation of the matrixA of such an operator in a suitable
basis in the block form

A = (Aij ) 16 i, j 6 M (19)

whereAij aredi × dj matrices.
Any vectorψ in V can be uniquely represented as a sum

ψ =
M∑
i=1

ψi ψi ∈ Vi. (20)

Now let us consider the case when all the solutions of the Schrödinger equation (15)
are meromorphicfor all E ∈ C, i.e. the corresponding Schrödinger operator has trivial
monodromy.

The following local criteria for this can be proved in the same way as in the scalar
case [1]. We will consider all the matrix coefficientsCl and ψs from (16), (17) to be
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represented in the form (19), (20) related to the eigensplitting (18) of the coefficientC−2.
In particular, we assume thatC−2 has the following diagonal form:

C−2 =



0 · I1

2 · I2

. . .

m(m− 1) · Im
. . .

M(M − 1) · IM


(21)

whereIm is dm× dm identity matrix. If some ofdm = 0 the corresponding entries in matrix
coefficients should be omitted. We should note also that, in general, the splittings (18)
depend on the singularityz = z0.

Theorem 2.A matrix Schr̈odinger operatorL with a meromorphic potentialU(z) has trivial
monodromy if and only if the following entries of the corresponding matrix coefficients in
the expansions ofU(z) near any of its singular points vanish:

1. C
ij

l = 0 if |i − j | > l + 1

2. C
ij

l = 0 if i + j = l + 3, l + 5, . . . , l + 2k + 1, . . .
(22)

wherel = −1, 0, . . . ,2M − 3. In particular, the matrix residueC−1 = 0.
The coefficientsψ0, ψ1, . . . , ψ2M−3 of the corresponding expansions of the vector-

eigenfunctions

ψ = z−M+1(ψ0+ zψ1+ · · · + zkψk + · · ·)
satisfy the conditions

1. ψi
l = 0 if i + l < M

2. ψi
l = 0 if i + l = M + 1,M + 3, . . . ,M + 2k + 1, . . .

and l − i 6 M − 3.

(23)

The structure of the corresponding coefficients is shown below:

C2M−3 =



? · · · ?

...
. . .

...

?

? · · · ? 0

 , C2M−4 =



? · · · ?
...

...
. . . ?

? 0

? · · · ? 0 ?

 ,

C2M−5 =



? · · · ?
...

... ?

...
. . . ? 0

? 0 ?

? · · · ? 0 ? 0


, . . . , CM−2 =



? · · · ? 0
. . . ? 0 ?

... ? 0 ?
...

· · ·
? 0 ?

...

0 ? 0 · · ·
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and

Ck =



? · · · ? 0 · · · 0 0
... ? 0 ?

. . . 0

? 0
. . .

. . .
. . .

...

0 ?
. . .

. . .
. . . ? 0

...
. . .

. . .
. . . 0 ?

0
. . . ? 0 ?

0 0 · · · 0 ?


k < M − 2.

In particular

C0 =



? 0 · · · 0 0

0 ? · · · 0
...

. . .
. . .

. . .
...

0
. . . 0

0 0 · · · 0 ?

 .

Then

ψ0 =



0

0
...

0

?

 , ψ1 =



0
...

0

?

0

 , ψ2 =



0
...

0

?

0

?


and so on.

ψM−1 =



?

0

?

0

?
...


, ψM =



?

?

0

?

0
...


, . . . , ψ2M−3 =



?

?
...

?

?

0


.

Consider now the main case whenU(z) is rational and decays at infinity. Since all the
residues must be zeroU(z) can be represented as

U(z) =
N∑
i=1

Ai

(z− zi)2 . (24)

Relations (22) give the algebraic system for the matrix coefficientsAi and poleszi which
we will call as locus equations. This terminology goes back to the paper by Airaultet al
[10], who considered this system in the scalar case.

Let us consider the case (which is generic in some sense, see equation (14) in section 2)
when the rank of all matricesAi is 1 and the only non-zero eigenvalue ofAi is 2. Such
matrices can be represented as

Ai = 2ai ⊗ bi
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whereai ∈ V ∗ is a covector,bi ∈ V is a vector such thatai(bi) = 1. By definition, for any
x ∈ V

ai ⊗ bi(x) = ai(x)bi .
Here the vectorbi is the eigenvector ofAi with eigenvalue 2:

Ai(bi) = 2ai(bi)bi = 2bi

and the covectorai defines the kernel ofAi by the relationai(x) = 0.
For the potential

U(z) =
N∑
i=1

2ai ⊗ bi
(z− zi)2 (25)

the locus equations (22) can be written in the following explicit form:[
ai ⊗ bi,

∑
j 6=i

aj ⊗ bj
(zj − zi)2

]
= 0 i = 1, . . . , N

∑
j 6=i

ai(bj ) aj (bi)

(zj − zi)3
= 0 i = 1, . . . , N.

(26)

They coincide with the stationary equations for the matrix version of the Calogero–Moser
system suggested by Gibbons and Hermsen [12] (see also [13]). The matrix Darboux
transformation allows us to construct some solutions to this complicated algebraic system
because of the following result.

Theorem 3.All matrix Schr̈odinger operatorsL obtained by Darboux transformation from
L0 = −d2/dz2 have trivial monodromy.

Proof. Indeed, the kernel of the intertwining operatorA is invariant underL0 and, therefore,
is generated by linear combination of exponents and polynomials. This implies that all the
coefficients of A are meromorphic inC and, therefore, any eigenfunctionψ of L can be
written on the form

ψ = A(ekzR1+ e−kzR2
)

whereR1 andR2 are constant matrices.

It turns out that in such a way all the Schrödinger operators with trivial monodromy
can be constructed. This follows from our main theorem:

Theorem 4.Let L be a matrix Schr̈odinger operator with a rational potentialU(z) vanishing
at∞. Suppose that the corresponding Schrödinger equationLψ = λψ has only regular
singular points andL has trivial monodromy. ThenL can be obtained by matrix Darboux
transformation fromL0 = −d2/dz2.

Proof. We borrow the main idea from the recent paper by Chalykh [7]. Let

U(z) =
N∑
s=1

As

(z− zs)2 (27)

andλs = Ms(Ms − 1) be the maximum of eigenvalues of the matrixAs . Introduce a linear
spaceV consisting of the vector functionsψ(z), z ∈ C satisfying the following conditions:

1. ψ(z)
∏N
s=1(z− zs)Ms−1 is holomorphic inC.

2. The coefficients of the Laurent expansion ofψ(z) at the vicinity of zs, s = 1, . . . N
satisfies the conditions (23) withM = Ms .
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Due to theorem 2 the coefficients of the potential satisfy relations (22). One can check
that this implies that the spaceV is invariant with respect toL (cf [7]).

Let us consider the vector functionψ0 =
∏N
s=1(z − zs)Ms−1ekzv, wherev is a constant

vector. Evidently,ψ0 ∈ V and, therefore, all vector functions

ψi = (L+ k2)iψ0

belong toV as well. These functions have the form

ψi = Pi(k, z)ekzv
wherePi(k, z) is a polynomial ink and a rational function inz. Since

Pi+1 =
(
− d2

dz2
− 2k

d

dz
+ U(z)

)
Pi

the degree ofPi in z at infinity decreases withi: degz Pi 6 M− i, M =
∑N

s=1(Ms−1). On
the other hand, since the spaceV is invariant underL the degree of the denominator ofPi
cannot be more than that of

∏N
s=1(z−zs)Ms−1. So, there exists aK such that(L+k2)ψK = 0.

It is easy to see that forM defined above

ψM =
[
2MM!k

∑N
s=1(Ms−1) + · · ·

]
ekzv 6= 0. (28)

We claim thatψM+1 = (L + k2)ψM = 0. Indeed, assume that this is not true. Then for
someK > M ψK 6= 0,

ψK+1 = (L+ k2)ψK = 0.

Since

PK+1 =
(
− d2

dz2
− 2k

d

dz
+ U(z)

)
PK = 0

andPK is polynomial ink its highest coefficient has to be constant. At the same timePK
has to decay at infinity at least aszM−K . ThusK = M and

LψM = −k2ψM.

Now considerv to be the basis vectorse1, e2, . . . , ed and arrange the matrix9 with the
corresponding vector functions9M as the columns. Replacingk by d/dz we can define a
differential operatorA such thatψ = AekzI . We have

L9 = LAekzI = −k2AekzI = −Ak2ekzI = AL0ekzI

and, therefore,

LA = AL0. (29)

Thus,L is related toL0 = −d2/dz2 by a matrix Darboux transformation. The theorem is
proved.

Remark. We should mention that in contrast to the scalar case MDT in general does not
preserve the regularity of the singular points. As an example one can takeL0 as above and

9 =
(
z 1

0 z

)
.

After the corresponding matrix Darboux transformation (11) we have

U =

−
1

z2

2

z3

0 − 1

z2
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so U(z) has the pole of order three atz = 0. Of course, this may happen only as a
degenerate case when some of the singularities collide (cf [14]).

As a corollary to theorem 4 we give the following description of the Schrödinger
operators with trivial monodromy in the simplest case whend = 2 and the potentialU(z)
has only three second-order poles. From the explicit equations (11) and (12) it follows that
these three poles can be arbitrary complex numbers, sayu, v andw. They are the only
essential parameters of the locus in this case: after a suitable transformationU → CUC−1

the potentialU(z) has the following form:

U(z) = Pu

(z− u)2 +
Pv

(z− v)2 +
Pw

(z− w)2
where the projectorsPu, Pv, Pw are defined as follows:

Pu = 2

(u− w)(u− v)
(

wv − u2 u(u2− vw)
w − 2u+ v −u(w − 2u+ v)

)

Pv = 2

(v − w)(v − u)
(

uw − u2 v(v2− uw)
u− 2v + w −v(u− 2v + w)

)
and

Pw = 2

(w − u)(w − v)
(

uv − w2 w(w2− uv)
u− 2w + v −w(u− 2w + v)

)
.

Note that this potential is symmetricU = UT iff u, v andw are the three roots of the
equation

z3+ 3z+ τ = 0

for someτ ∈ C.
The general investigation of the symmetry and reality conditions as well as the spectral

properties of the corresponding Schrödinger operators is still to be done. We should mention
in this context the papers by Wadati [15] and Calogero and Degasperis [16], where some
of these problems have been discussed in the relation to the matrix KdV equation (see also
Agranovich and Marchenko [17]).
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